کاوش موضوع مشتق
صفحه اصلی
مشتق
مشتق (به انگلیسی: Derivative) ایدهٔ اصلی حساب دیفرانسیل، بخش اول آنالیز ریاضی است که نرخ تغییرات تابع را نشان میدهد. مشتق نیز، نظیر انتگرال، از مسئلهای در هندسه، یعنی یافتن خط مماس در یک نقطه از منحنی ناشی شدهاست.
عملیات مشتق گیری همانند یا شبیه دیفرانسیل گیری و برعکس عملیات انتگرال گیری است.
در نگاه نخست اینطور به نظر میرسید که بین مسئلهٔ یافتن مساحت سطح زیر یک نمودار و موضوع تعیین خط مماس بر منحنی در یک نقطه رابطهای وجود ندارد، اما اولین کسی که دریافت این دو مفهومِ به ظاهر دور از هم، در واقع ارتباط نسبتاً نزدیکی با هم دارند آیزاک بارو معلم آیزاک نیوتون بودهاست.
اما مفهوم مشتق به شکل امروزی آن، نخستین بار در سال ۱۶۶۶ میلادی توسط نیوتون و به فاصلهٔ چند سال بعد از او، توسط گوتفرید لایبنیتس، مستقل از یکدیگر پدید آمد. این دو دانشمند در ادامهٔ کار خود، باز هم بهطور مستقل، بخش دوم آنالیز ریاضی یعنی حساب انتگرال را عرضه کردند که اساس آن بر عمل انتگرالگیری قرار دارد.
نیوتون از شیوهٔ استدلال سینماتیک و با دیدگاه فیزیکی به بررسی مشتق پرداخته و از آن برای بهدست آوردن سرعت لحظهای استفاده میکرد. اما لایبنیتس با دیدگاهی هندسی، از مشتق برای بهدست آوردن ضریب زاویهٔ مماس در منحنیها استفاده میکرد. هر یک از این دو دانشمند نمادهای جداگانهای را برای نشان دادن مشتق به کار میبردند.
پیشرفت حساب دیفرانسیل و انتگرال در دوران بعد به آگوستَن لویی کوشی، برنهارد ریمان و برادران برنولی، یعنی یاکوب و یوهان، مربوط میشود. گیوم لوپیتال (به فرانسوی: Guillaume de l'Hôpital)، دانشمند فرانسوی، در سال ۱۶۹۶ نخستین کتاب درسی مربوط به آنالیز ریاضی را با نام «آنالیز بینهایت کوچکها برای بررسی منحنیها» منتشر کرد که در واقع خلاصهای از درسهایی بود که یوهان برنولی به عنوان معلم برای او نوشته بود. در این کتاب، قاعدهٔ رفع ابهام در حد، با استفاده از مشتق نیز آمده که به قاعدهٔ هوپیتال مشهور است ولی در واقع متعلق به یوهان برنولی بودهاست.... بیشتر در ویکی پدیا